from pandas
import Series, DataFrame
# Series接收list或dict作为一维数据
#两个属性:values, index
#①
s1 = Series([4,7,-5,3
])
print(s1.values)
#值
print(s1.index)
#序列号
s1.index = [
'a',
'b',
'c',
'd']
print(s1)
#②
s2 = Series({
'Ohio': 35000,
'Texas': 71000,
'Oregon': 16000,
'Utah': 5000
})
print(s2)
#DataFrame接收matrix或dict(要求item为list)作为二维数据
# 三个属性:values, index, columns
#①
data = {
'state': [
'Ohio',
'Ohio',
'Ohio',
'Nevada',
'Nevada'],
'year': [2000, 2001, 2002, 2001, 2002
],
'pop': [1.5, 1.7, 3.6, 2.4, 2.9
]}
f1 =
DataFrame(data)
print(f1.values)
#值
print(f1.index)
#行序列(号)
print(f1.columns)
#列序列(号)
#②
f2 = DataFrame(data, columns=[
'year',
'state',
'pop'])
#③
f3 = DataFrame(data, columns=[
'year',
'state',
'pop',
'debt'], index=[
'one',
'two',
'three',
'four',
'five'])
#重要的功能
##1.重新索引
#① Series
s1 = Series([4.5, 7.2, -5.3, 3.6], index=[
'd',
'b',
'a',
'c'])
s2 = s1.reindex([
'a',
'b',
'c',
'd',
'e'])
s3 = s1.reindex([
'a',
'b',
'c',
'd',
'e'], fill_value=
0)
s4 = Series([
'blue',
'purple',
'yellow'], index=[0, 2, 4
])
s5 = s4.reindex(range(6), method=
'ffill')
#② DataFrame
f1 = DataFrame(np.arange(9).reshape((3, 3)), index=[
'a',
'c',
'd'], columns=[
'Ohio',
'Texas',
'California'])
f2 = f1.reindex(index=[
'a',
'b',
'c',
'd'])
#行序列(号)
f3 = f1.reindex(columns=[
'Texas',
'Utah',
'California'])
#列序列(号)
##2.索引,挑选和过滤
# .at, .iat, .loc, .iloc .ix
# 1)类似 ndarry 的索引操作
#① Series
s1 = Series(np.arange(4.), index=[
'a',
'b',
'c',
'd'])
s1['b']
s1[1
]
s1[2:4
]
s1[['b',
'a',
'd']]
s1[[1, 3
]]
s1[s1 < 2
]
s1['b':
'c']
s1['b':
'c'] = 5
#② DataFrame
df = DataFrame(np.arange(16).reshape((4, 4)), index=[
'Ohio',
'Colorado',
'Utah',
'New York'],
columns=[
'one',
'two',
'three',
'four'])
df['two']
df[['three',
'one']]
df[:2
]
df[df['three'] > 5
]
df > 5
df[df['three'] < 5] =
0
# 2)标签索引
#① Series
#② DataFrame
df.ix[
'Colorado',
'three']
df.ix['Colorado', [
'three',
'four']]
df.ix[['Colorado',
'Utah'], [
'three',
'four']]
df.ix[['Colorado',
'Utah'], [2, 0, 3
]]
df.ix['Colorado']
df.ix[2
]
df.ix[:'Utah',
'three']
df.ix[df.three > 5, :3]
转载于:https://www.cnblogs.com/hhh5460/p/5371309.html
相关资源:Pandas——练习题一:在校生饮酒消费数据分析