pandas 透视表 pivot

mac2022-06-30  85

The function pandas.pivot_table can be used to create spreadsheet-style pivot tables.It takes a number of arguments    data: A DataFrame object    values: a column or a list of columns to aggregate    index: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.    columns: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.    aggfunc: function to use for aggregation, defaulting to numpy.mean    

import numpy as np import pandas as pd import datetime df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 6, 'B': ['A', 'B', 'C'] * 8, 'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4, 'D': np.random.randn(24), 'E': np.random.randn(24), 'F': [datetime.datetime(2013, i, 1) for i in range(1, 13)] + [datetime.datetime(2013, i, 15) for i in range(1, 13)]}) pd.pivot_table(df, index=['A', 'B'], columns=['C'], values='D', aggfunc=np.sum) pd.pivot_table(df, index=['C'], columns=['A', 'B'], values='D', aggfunc='sum') pd.pivot_table(df, index=['A', 'B'], columns=['C'], values=['D','E'], aggfunc=np.sum) pd.pivot_table(df, index=['A', 'B'], columns=['C'], values=['D','E'], aggfunc=[np.sum]) pd.pivot_table(df, index=['A', 'B'], columns=['C'], values=['D','E'], aggfunc={'D':len,'E':np.sum}) pd.pivot_table(df, index=['A', 'B'], columns=['C'], values=['D','E'], aggfunc={'D':len,'E':[np.sum, np.mean]}) pd.pivot_table(df, index=pd.Grouper(freq='M', key='F'), columns='C', values='D', aggfunc=np.sum) # 有点类似 resample

 

 

转载于:https://www.cnblogs.com/hhh5460/p/5597314.html

相关资源:JAVA上百实例源码以及开源项目
最新回复(0)