一、两层神经网络(感知机)
import numpy as np
'''极简两层反传(BP)神经网络'''
# 样本
X = np.array([[0,0,1
],[0,1,1
],[1,0,1
],[1,1,1
]])
y = np.array([0,0,1,1
])
# 权值矩阵 初始化
Wi = 2 * np.random.random(3) - 1
for iter
in range(10000
):
# 前向传播,计算误差
li =
X
lo = 1 / (1 + np.exp(-np.dot(li, Wi)))
# 激活函数:sigmoid
lo_error = y -
lo
# 后向传播,更新权值
lo_delta = lo_error * lo * (1 - lo)
# sigmoid函数的导数(梯度下降)
Wi +=
np.dot(lo_delta, li)
print(
"训练效果:\n", lo)
说明:
只有两层:输入层/输出层, 本质是感知机
离线算法:批量学习(numpy矩阵运算的威力在此体现出来了)
效果还蛮不错:
二、三层神经网络
import numpy as np
'''极简三层反传(BP)神经网络'''
# 样本
X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1
]])
y = np.array([0,1,1
,0])
# 权值矩阵
Wi = 2 * np.random.random((3, 5)) - 1
Wh = 2 * np.random.random(5) - 1
# 训练
for i
in range(10000
):
# 前向传播,计算误差
li =
X
lh = 1 / (1 + np.exp(-np.dot(li, Wi)))
lo = 1 / (1 + np.exp(-
np.dot(lh, Wh)))
lo_error = y -
lo
# 后向传播,更新权值
lo_delta = lo_error * (lo * (1 - lo))
lh_delta = np.outer(lo_delta, Wh) * (lh * (1 - lh))
# 外积!感谢 numpy 的强大!
Wh +=
np.dot(lh.T, lo_delta)
Wi +=
np.dot(li.T, lh_delta)
print(
"训练之后:\n", lo)
说明: 增加了一个隐藏层(五个节点)
三、四层神经网络
import numpy as np
'''极简四层反传(BP)神经网络'''
# 样本
X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1
]])
y = np.array([0,1,1
,0])
# 权值矩阵
Wi = 2 * np.random.random((3, 5)) - 1
Wh1 = 2 * np.random.random((5, 4)) - 1
Wh2 = 2 * np.random.random(4) - 1
# 训练
for i
in range(10000
):
# 前向传播,计算误差
li =
X
lh1 = 1 / (1 + np.exp(-np.dot(li, Wi )))
lh2 = 1 / (1 + np.exp(-
np.dot(lh1, Wh1)))
lo = 1 / (1 + np.exp(-
np.dot(lh2, Wh2)))
lo_error = y -
lo
# 后向传播,更新权值
lo_delta = lo_error * (lo * (1 - lo))
lh2_delta = np.outer(lo_delta, Wh2.T) * (lh2 * (1 - lh2))
lh1_delta = np.dot(lh2_delta, Wh1.T) * (lh1 * (1 - lh1))
# 注意:这里是dot!
Wh2 +=
np.dot(lh2.T, lo_delta)
Wh1 +=
np.dot(lh1.T, lh2_delta)
Wi +=
np.dot(li.T, lh1_delta)
print(
"训练之后:\n", lo)
说明: 增加了两个隐藏层(五个节点,四个节点)
四、三层神经网络的另一种方式
import numpy as np
# 样本
X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1
]])
y = np.array([0,1,1
,0])
ni = 3
# 输入层节点数
nh = 5
# 隐藏层节点数
no = 2
# 输出层节点数(注意这里是2!!)
# 初始化矩阵、偏置
Wi = np.random.randn(ni, nh) /
np.sqrt(ni)
Wh = np.random.randn(nh, no) /
np.sqrt(nh)
bh =
np.zeros(nh)
bo =
np.zeros(no)
# 训练
for i
in range(1000
):
# 前向传播
li =
X
lh = np.tanh(np.dot(X, Wi) +
bh) # tanh 函数
lo = np.exp(np.dot(lh, Wh) +
bo)
probs = lo / np.sum(lo, axis=1, keepdims=
True)
# 后向传播
lo_delta =
probs
lo_delta[range(X.shape[0]), y] += 1
# -=1
lh_delta = np.dot(lo_delta, Wh.T) * (1 - np.power(lh, 2
)) # tanh 函数的导数
# 更新权值、偏置
epsilon = 0.01
# 学习速率
lamda = 0.01
# 正则化强度
bo += -epsilon * np.sum(lo_delta, axis=0, keepdims=True).reshape(-1
)
Wh += -epsilon * (np.dot(lh.T, lo_delta) + lamda *
Wh)
bh += -epsilon * np.sum(lh_delta, axis=
0)
Wi += -epsilon * (np.dot(X.T, lh_delta) + lamda *
Wi)
print(
"训练之后:\n", np.argmax(probs, axis=1))
说明:
1. 输出层有两个节点。其原因是样本有两种类别(最值得注意)
2. 添加了偏置、学习速率、正则化强度
3. 预测结果是: np.argmax(probs, axis=1)
4. 当然,也可以推广到多个隐藏层的情况
五、任意层数的神经网络
import numpy as np
# 样本
X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1
]])
y = np.array([0,1,1
,0])
# 神经网络结构,层数任意!
sizes = [3,5,7,2
]
# 初始化矩阵、偏置
biases = [np.random.randn(j)
for j
in sizes[1
:]]
weights = [np.random.randn(i,j)
for i,j
in zip(sizes[:-1], sizes[1
:])]
layers = [None] *
len(sizes)
layers[0] =
X
layers_delta = [None] * (len(sizes) - 1
)
epsilon = 0.01
# 学习速率
lamda = 0.01
# 正则化强度
# 训练
for i
in range(1000
):
# 前向传播
for i
in range(1
, len(layers)):
layers[i] = 1 / (1 + np.exp(-(np.dot(layers[i-1], weights[i-1]) + biases[i-1
])))
# 后向传播
probs = layers[-1] / np.sum(layers[-1], axis=1, keepdims=
True)
layers_delta[-1] =
probs
layers_delta[-1][range(X.shape[0]), y] += 1
for i
in range(len(sizes)-2, 0, -1
):
layers_delta[i-1] = np.dot(layers_delta[i], weights[i].T) * (layers[i] * (1 -
layers[i]))
# 更新权值、偏置
for i
in range(len(sizes)-2, -1, -1
):
biases[i] -= epsilon * np.sum(layers_delta[i], axis=
0)
weights[i] -= epsilon * (np.dot(layers[i].T, layers_delta[i]) + lamda *
weights[i])
print(
"训练之后-->np.argmax(probs, axis=1):\n", np.argmax(probs, axis=1))
说明:
1. 这只是上一种神经网络的层数的扩展
2. 通过内部循环,层数可以任意。
3. 循环次数太大的时候(比如10000),会报RunTimeError,貌似溢出
转载于:https://www.cnblogs.com/hhh5460/p/5249983.html
相关资源:JAVA上百实例源码以及开源项目