python 回溯法 子集树模板 系列 —— 4、数字组合问题

mac2022-06-30  95

问题

找出从自然数1、2、3、...、n中任取r个数的所有组合。

例如,n=5,r=3的所有组合为: 1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5

分析

换个角度,r=3的所有组合,相当于元素个数为3的所有子集。因此,在遍历子集树的时候,对元素个数不为3的子树剪枝即可。

注意,这里不妨使用固定长度的解。

直接套用子集树模板。

代码

'''数字组合问题''' n = 5 r = 3 a = [1,2,3,4,5] # 五个数字 x = [0]*n # 一个解(n元0,1数组) 固定长度 X = [] # 一组解 def conflict(k): global n, r, x if sum(x[:k+1]) > r: # 部分解的长度超出r return True if sum(x[:k+1]) + (n-k-1) < r: # 部分解的长度加上剩下长度不够r return True return False # 无冲突 # 套用子集树模板 def comb(k): # 到达第k个元素 global n, x, X if k >= n: # 超出最尾的元素 #print(x) X.append(x[:]) # 保存(一个解) else: for i in [1, 0]: # 遍历元素 a[k] 的两种选择状态:1-选择,0-不选 x[k] = i if not conflict(k): # 剪枝 comb(k+1) # 根据一个解x,构造对应的一个组合 def get_a_comb(x): global a return [y[0] for y in filter(lambda s:s[1]==1, zip(a, x))] # 根据一组解X,构造对应的一组组合 def get_all_combs(X): return [get_a_comb(x) for x in X] # 测试 comb(0) print(X) print(get_all_combs(X))

效果图

转载于:https://www.cnblogs.com/hhh5460/p/6920382.html

最新回复(0)