作者:hhh5460
大抵分成两类
原文没有使用pandas,我使用pandas重新实现了朴素贝叶斯算法,看起来非常简洁、清爽。
import pandas as pd ''' 导入数据集 {a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1} {a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1} {a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1} {a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1} {a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1} {a1 = 1, a2 = 0, C = 0} {a1 = 1, a2 = 0, C = 1} {a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 0, C = 1} {a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1} {a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1} {a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1} ''' #导入数据集 data = [[0, 0, 0], [0, 0, 0], [0, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 1, 0], [1, 1, 0], [1, 1, 0], [1, 1, 0], [0, 0, 1], [0, 0, 1], [0, 0, 1], [0, 0, 1], [0, 0, 1], [1, 0, 1], [1, 0, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]] df = pd.DataFrame(data, columns=['a1', 'a2', 'c']) ''' #计算类别的先验概率 #P(C = 0) = 0.5 #P(C = 1) = 0.5 ''' #计算类别的先验概率 pc = df['c'].value_counts()/df['c'].size ''' 计算每个特征属性条件概率: P(a1 = 0 | C = 0) = 0.3 P(a1 = 1 | C = 0) = 0.7 P(a2 = 0 | C = 0) = 0.4 P(a2 = 1 | C = 0) = 0.6 P(a1 = 0 | C = 1) = 0.5 P(a1 = 1 | C = 1) = 0.5 P(a2 = 0 | C = 1) = 0.7 P(a2 = 1 | C = 1) = 0.3 ''' # 计算每个特征属性条件概率: pa1 = pd.crosstab(df['c'], df['a1'], margins=True).apply(lambda x:x/x[-1], axis=1) pa2 = pd.crosstab(df['c'], df['a2'], margins=True).apply(lambda x:x/x[-1], axis=1) ''' 测试样本: x = { a1 = 1, a2 = 1} p(x | C = 0) = p(a1 = 1 | C = 0) * p( a2 = 1 | C = 0) = 0.3 * 0.6 = 0.18 p(x | C = 1) = p(a1 = 1 | C = 1) * p (a2 = 1 | C = 1) = 0.5 * 0.3 = 0.15 ''' # 给出测试样本: x = pd.Series([1,1], index=['a1', 'a2']) px = pa1.ix[:,x[0]].mul(pa2.ix[:,x[1]])[:-1] ''' 计算P(C | x): P(C = 0) * p(x | C = 1) = 0.5 * 0.18 = 0.09 P(C = 1) * p(x | C = 1) = 0.5 * 0.15 = 0.075 所以认为测试样本属于类型C1 ''' # 计算P(C | x) res = pc.mul(px).argmax() print(res)同样的方法,7行代码解决这里的问题:
import pandas as pd data = [['打喷嚏','护士','感冒'], ['打喷嚏','农夫','过敏'], ['头痛','建筑工人','脑震荡'], ['头痛','建筑工人','感冒'], ['打喷嚏','教师','感冒'], ['头痛','教师','脑震荡']] df = pd.DataFrame(data, columns=['症状','职业','疾病']) #计算类别的先验概率 pr = df['疾病'].value_counts()/df['疾病'].size # 计算每个特征属性条件概率: pzz = pd.crosstab(df['疾病'], df['症状'], margins=True).apply(lambda x:x/x[-1], axis=1) pzy = pd.crosstab(df['疾病'], df['职业'], margins=True).apply(lambda x:x/x[-1], axis=1) # 给出测试样本: x = pd.Series(['打喷嚏','建筑工人'], index=['症状','职业']) px = pzz.ix[:,x[0]].mul(pzy.ix[:,x[1]])[:-1] # 计算P(C | x) res = pr.mul(px).argmax() print(res)这里的第二个例子: **
# 检测SNS社区中不真实账号 # 运维人员人工检测过的1万个账号作为训练样本 # 原始数据格式: # ['日志数量','好友数量','注册天数','是否使用真实头像','账号类别'] '''可惜,没有真实数据!!!!''' data = [ [3,0,120,1,1], [3,0,120,1,1], [3,0,120,1,1], [3,0,120,1,1], [3,0,120,1,1], [3,0,120,1,1], [3,0,120,1,1], #... [3,0,120,1,1]] df = pd.DataFrame(data, columns=['日志数量','好友数量','注册天数','是否使用真实头像','账号类别']) # 计算训练样本中每个类别的频率(当做 类别的先验概率) ''' P(C=0) = 8900/10000 = 0.89 P(C=1) = 1100/10000 = 0.11 ''' pr = df['账号类别'].value_counts()/df['账号类别'].size #================================================================ #---------------------------------------------------------------- # 构建两个特征 # ['日志数量/注册天数','好友数量/注册天数'] df['日志数量/注册天数'] = df['日志数量'].div(df['注册天数']) df['好友数量/注册天数'] = df['好友数量'].div(df['注册天数']) # 把'日志数量/注册天数'分解成[0, 0.05]、(0.05, 0.2)、[0.2, +∞)三个区间 # 把'好友数量/注册天数'分解成[0, 0.1]、(0.1, 0.8)、[0.8, +∞)三个区间 # 打标签函数(根据 x 值所在的区间) def depart(x, low, high): if x <= low: return 0 elif x >= high: return 2 else: return 1 # 打标签 df['特征1'] = df['日志数量/注册天数'].apply(depart, args=(0.05, 0.2)) df['特征2'] = df['好友数量/注册天数'].apply(depart, args=(0.1, 0.8)) df['特征3'] = df['是否使用真实头像'] #---------------------------------------------------------------- #================================================================ # 计算每个特征属性条件概率: ptz1 = pd.crosstab(df['账号类别'], df['特征1'], margins=True).apply(lambda x:x/x[-1], axis=1) ptz2 = pd.crosstab(df['账号类别'], df['特征2'], margins=True).apply(lambda x:x/x[-1], axis=1) ptz3 = pd.crosstab(df['账号类别'], df['特征3'], margins=True).apply(lambda x:x/x[-1], axis=1) # 给出测试样本: x_ = pd.Series([0.1, 0.2, 0], index=['日志数量/注册天数', '好友数量/注册天数', '是否使用真实头像']) #================================================================ #---------------------------------------------------------------- # 打标签 x = pd.Series([depart(x_[0], 0.05, 0.2), depart(x_[1], 0.1, 0.8), x_[2]], index=['特征1','特征2','特征3']) #---------------------------------------------------------------- #================================================================ px = ptz1.ix[:,x[0]].mul(ptz2.ix[:,x[1]]).mul(ptz3.ix[:,x[2]])[:-1] # 计算P(C | x) res = pr.mul(px).argmax() print(res)假设符合正态分布,先求出按类的均值,方差,再代入密度函数这里的第三个例子: **
import pandas as pd # 关于处理连续变量的另一种方法 # 下面是一组人类身体特征的统计资料 data = [['男', 6, 180, 12], ['男', 5.92, 190, 11], ['男', 5.58, 170, 12], ['男', 5.92, 165, 10], ['女', 5, 100, 6], ['女', 5.5, 150, 8], ['女', 5.42, 130, 7], ['女', 5.75, 150, 9]] df = pd.DataFrame(data, columns=['性别','身高(英尺)','体重(磅)','脚掌(英寸)']) # 已知某人身高6英尺、体重130磅,脚掌8英寸,请问该人是男是女? x = pd.Series([6,130,8], index=['身高(英尺)','体重(磅)','脚掌(英寸)']) # 这里的困难在于, # 1.连续变量 # 2.样本太少(无法分成区间) # 解决: # 假设男性和女性的身高、体重、脚掌都是正态分布, # 通过样本计算出均值和方差,也就是得到正态分布的密度函数。 # 有了密度函数,就可以把值代入,算出某一点的密度函数的值。 mean_male = df[df['性别']=='男'].mean() var_male = df[df['性别']=='男'].var() mean_formale = df[df['性别']=='女'].mean() var_formale = df[df['性别']=='女'].var() df2 = pd.concat((x, mean_male, var_male, mean_formale, var_formale), axis=1, keys=['x', 'mean_male', 'var_male', 'mean_formale', 'var_formale']) # 正态分布密度函数: # f(x|male) = exp(-(x-mean)**2/(2*var))/sqrt(2*pi*var) from math import pi def f(x, mean, var): return exp(-(x-mean)**2/(2*var))/sqrt(2*pi*var) # 密度函数 # 求对应的密度函数值 df2['px_male'] = df2['x', 'mean_male', 'var_male'].apply(lambda x:f(x[0],x[1],x[2])) ###################报错!容后再改!! df2['px_formale'] = df2['x', 'mean_formale', 'var_formale'].apply(lambda x:f(x[0],x[1],x[2])) # 类别的先验概率 pr = df['性别'].value_counts()/df['性别'].size # 预测结果 res = pd.Series([df2['p_male'].cumprod()[-1]*pr['男'], df2['p_formale'].cumprod()[-1]]*pr['女'], index=['男','女']).argmax() print(res)转载于:https://www.cnblogs.com/hhh5460/p/6417880.html