python 回溯法 子集树模板 系列 —— 8、图的遍历

mac2022-06-30  91

问题

一个图: A --> B A --> C B --> C B --> D B --> E C --> A C --> D D --> C E --> F F --> C F --> D

从图中的一个节点E出发,不重复地经过所有其它节点后,回到出发节点E,称为一条路径。请找出所有可能的路径。

分析

将这个图可视化如下:

本问题涉及到图,那首先要考虑图用那种存储结构表示。邻接矩阵、邻接表、...都不太熟。

百度一下,在这里发现了一个最爱。这是网上找到一种最简洁的邻接表表示方式。

接下来对问题本身进行分析:

显然,问题的解的长度是固定的,亦即所有的路径长度都是固定的:n(不回到出发节点) 或 n+1(回到出发节点)

每个节点,都有各自的邻接节点。

对某个节点来说,它的所有邻接节点,可以看作这个节点的状态空间。遍历其状态空间,剪枝,深度优先递归到下一个节点。搞定!

至此,很明显套用回溯法子集树模板。

代码

''' 图的遍历 从一个节点出发,不重复地经过所有其它节点后,回到出发节点。找出所有的路径 ''' # 用邻接表表示图 n = 6 # 节点数 a,b,c,d,e,f = range(n) # 节点名称 graph = [ {b,c}, {c,d,e}, {a,d}, {c}, {f}, {c,d} ] x = [0]*(n+1) # 一个解(n+1元数组,长度固定) X = [] # 一组解 # 冲突检测 def conflict(k): global n,graph,x # 第k个节点,是否前面已经走过 if k < n and x[k] in x[:k]: return True # 回到出发节点 if k == n and x[k] != x[0]: return True return False # 无冲突 # 图的遍历 def dfs(k): # 到达(解x的)第k个节点 global n,a,b,c,d,e,f,graph,x,X if k > n: # 解的长度超出,已走遍n+1个节点 (若不回到出发节点,则 k==n) print(x) #X.append(x[:]) else: for node in graph[x[k-1]]: # 遍历节点x[k]的邻接节点(x[k]的所有状态) x[k] = node if not conflict(k): # 剪枝 dfs(k+1) # 测试 x[0] = e # 出发节点 dfs(1) # 开始处理解x中的第2个节点

效果图

转载于:https://www.cnblogs.com/hhh5460/p/6928465.html

相关资源:0-1 Knapsack 试设计一个用回溯法搜索子集空间树的函数。该函数的参数包括结点可行性判定函数和上界函数等必要的函数,并将此函数用于解0-1背包问题。
最新回复(0)